Haantjes algebras and diagonalization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Banach Algebras of Pseudodifferential Operators and Their Almost Diagonalization

We define new symbol classes for pseudodifferential operators and investigate their pseudodifferential calculus. The symbol classes are parametrized by commutative convolution algebras. To every solid convolution algebraA over a lattice Λ we associate a symbol class M. Then every operator with a symbol in M is almost diagonal with respect to special wave packets (coherent states or Gabor frames...

متن کامل

Quantized Affine Lie Algebras and Diagonalization of Braid Generators

Let Uq(Ĝ) be a quantized affine Lie algebra. It is proven that the universal R-matrix R of Uq(Ĝ) satisfies the celebrated conjugation relation R = TR with T the usual twist map. As applications, braid generators are shown to be diagonalizable on arbitrary tensor product modules of integrable irreducible highest weight Uq(Ĝ)-module and a spectral decomposition formula for the braid generators is...

متن کامل

Quantum Affine Lie Algebras, Casimir Invariants and Diagonalization of the Braid Generator

Let Uq(Ĝ) be an infinite-dimensional quantum affine Lie algebra. A family of central elements or Casimir invariants are constructed and their eigenvalues computed in any integrable irreducible highest weight representation. These eigenvalue formulae are shown to absolutely convergent when the deformation parameter q is such that |q| > 1. It is proven that the universal R-matrix R of Uq(Ĝ) satis...

متن کامل

Diagonalization in Compact Lie Algebras and a New Proof of a Theorem of Kostant

We exhibit a simple algorithmic procedure to show that any element of a compact Lie algebra is conjugate to an element of a fixed maximal abelian subalgebra. An estimate of the convergence of the algorithm is obtained. As an application, we provide a new proof of Kostant's theorem on the projection of orbits onto a maximal abelian subalgebra. 0 Let M £ M(n, C) be a Hermitian matrix and consider...

متن کامل

Numerical block diagonalization of matrix *-algebras with application to semidefinite programming

Semidefinite programming (SDP) is one of the most active areas in mathematical programming, due to varied applications and the availability of interior point algorithms. In this paper we propose a new pre-processing technique for SDP instances that exhibit algebraic symmetry. We present computational results to show that the solution times of certain SDP instances may be greatly reduced via the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2021

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2020.103968